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Abstract Windbreaks are valuable resources in

conserving soils and providing crop protection in

Great Plains states in the US. Currently, Kansas has no

up-to date inventory of windbreaks. The goal of this

project was to assist foresters with future windbreak

renovation planning and reporting, by outlining a

series of semi-automated digital image processing

methods that rapidly identify windbreak locations.

There were two specific objectives of this research.

First, to develop semi-automated methods to identify

the location of windbreaks in Kansas, this can be

applied to other regions in Kansas and the Great

Plains. We used a remote sensing technique known as

object-based image analysis (OBIA) to classify wind-

breaks visible in the color aerial imagery of National

Agriculture Imagery Program. We also combined GIS

techniques and field survey to complement OBIA in

generating windbreak inventory. The techniques suc-

cessfully located more than 4500, windbreaks

covering an approximate area of 2500, hectares in 14

Kansas counties. The second purpose of this research

is to determine how well the results of the automated

classification schemes match with other available

windbreak data and the selected sample collected in

the field. The overall accuracy of OBIA method was

58.97 %. OBIA combined with ‘heads up’ digitizing

and field survey method yielded better result in

identifying and locating windbreaks in the studied

counties with overall accuracy of 96 %.

Keywords Shelterbelts � Soil conservation � Crop

protection � Kansas � Great plains

Introduction

Windbreaks provide a number of environmental bene-

fits for semi-arid regions throughout the world. Also

known as shelterbelts or living fence, they are valuable

resources for conserving soil and providing crop

protection in Kansas, as well as in other Great Plains

states (USDA 1980; Brandle et al. 2004). The primary

function of windbreaks is to reduce wind velocity and

offer protection from the severe weather of the Great

Plains. Windbreaks also provide wildlife habitat,

sources of fuel and fodder, provide recreational oppor-

tunities and improve energy efficiency for farmsteads

(USDA 1980; Cable 1999; SAF 2008). With the change

in the agricultural landscape, the functional value of

windbreaks is also changing in North American

K. Ghimire (&) � D. G. Goodin �
J. M. Shawn Hutchinson

Department of Geography, Kansas State University,

Manhattan, KS 66506-2904, USA

e-mail: kabita@ksu.edu

M. W. Dulin

US Army Corps of Engineers, Kansas City,

MO 64106, USA

R. L. Atchison

Kansas Forest Service, Kansas State University,

Manhattan, KS 66506, USA

123

Agroforest Syst

DOI 10.1007/s10457-014-9731-4



Midwest. Studies have shown that windbreaks play

important role in livestock industry and its operation.

They are beneficial in protecting young animals from

cold during winter and spring, help increase their

feeding efficiency, protect feedlots, pastures and calving

areas (Quam et al. 1994; Tyndall 2009). Windbreaks are

in demand in the Great Plains also to mitigate odor from

livestock industry and for aesthetic appeal of agricul-

tural lands (Tyndall 2009; Grala and Tyndall 2010) and

efforts to renovate older windbreaks have increased in

recent years (USDA 1994; Atchison et al. 2010).

The first major planting of windbreaks in the United

States occurred during the 1930’s in response to the

Dust Bowl (PSFP 1937; Read 1958; Droze 1977;

Brandle et al. 2004). Through the Prairie States

Forestry Project (PSFP 1937), 145–200 million trees

and shrubs were planted into 30,000 shelterbelts,

which totaled 18,600 miles in length from the

Canadian border of North Dakota south to the Texas

Panhandle (Read 1958; Droze 1977; Croker 1991)

Assessment of the size, condition and location of

windbreaks since the dustbowls days has been marginal

at best, as USDA Forest Service Forest Inventory and

Analysis Program measurements did not capture the

majority of the resources. Evaluations of the PSFP

efforts in 1954 reported 42 percent of the windbreaks

surveyed in good or excellent condition, 31 percent fair,

and 19 percent poor. The remaining 8 percent had been

removed (Read 1958). Sorenson and Marotz (1977)

expressed concerns that windbreaks in Kansas were

being removed and not replaced estimating a 20 % loss

between 1962 and 1970. Due to the introduction of

irrigation systems in the 70 s, a 1980 USDA report

documented 119 windbreaks removed in 32 Kansas

counties (USDA 1980). Castonguay and Hansen (1984)

reported that wooded stripes and windbreaks in Kansas

covered approximately 136,000 hectares and were more

than 54,000 miles long. In 1992, Natural Resource

Conservation Service (NRCS) Natural Resource Inven-

tory (NRI) found 78,000 windbreaks in the state totaling

46,134 hectares with a collective length of 20,000 miles.

Thirteen percent were found to be in excellent condi-

tion, 38 percent good, 34 percent fair and 15 percent

poor (USDA 1994). In spite of an educational campaign

and the conservation efforts by government agencies the

number of windbreaks on the Great Plains has been

decreasing and their condition is deteriorating (USDA

1994; Cable 1999). The most recent windbreak assess-

ment in Kansas occurred through the Great Plains

Initiative in 2008 and 2009, which estimated 289,577

windbreaks stretching 43,436 miles providing wind

protection to 1.2 million acres of land (Atchison et al.

2010). Though the establishment of new field wind-

breaks to address windblown soil erosion has become

passé, Atchison et al. (2010) reported 2.9 million acres

of cultivated cropland in Kansas (12 %) exceeds

tolerable limits for soil erosion. The tolerable limit is

around 1.3 tons/acre/year (NRI NRCS 2010).

Current drought and projections for continuing

drought associated with climate change combined with

a possible move back to dry-land farming as the Ogallala

aquifer is depleting, all point to the important conserva-

tion role field windbreaks offer to the Great Plains. Yet,

there is little good science to efficiently document

windbreak location, size, or condition. Therefore, it is

now timely to build upon previous work of NRCS and

additional windbreak research projects to develop meth-

ods for the rapid identification of windbreak location and

assess their condition while promoting their important

role as a conservation tool in the Great Plains.

Purpose and objectives of the study

The purposes of this research are twofold. First, we aim

to develop semi-automated methods to identify the

location of windbreaks in Kansas that can be applied to

other counties/regions in Kansas and the Great Plains.

To achieve this goal, we used a remote sensing approach

based on object-based image analysis (OBIA) to classify

windbreaks visible in the color aerial imageries of

2008/2010/2012 National Agriculture Imagery Program

(NAIP). Attributes from four spectral bands (blue,

green, red, and near infrared) in the NAIP imagery were

used in the segmentation and classification process.

The second purpose of this research is to determine

how well the results of the automated classification

schemes match with other available windbreak data

and the selected sample collected in the field.

Study area

The study area consists of 14 counties from the western

Kansas Forest District (Fig. 1). Out of the fourteen, seven

counties are associated with Coronado Crossing

Resource Conservation and Development Council (RC

& D). They are Ford, Clark, Gray, Haskell, Hodgeman,
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Meade, and Seward. The other seven counties are from

Smoky Hill region and they are Wallace, Logan, Gove,

Trego, Ellis, Russell and Ellsworth. Ford County served

as the pilot county for the method development. The

methods developed were applied in the rest of the

counties in the study area.

Agricultural cropland dominates the land cover

within these counties, while mixed or short grass

prairies make the majority of native vegetation

(Goodin et al. 2002). Land uses related to the cattle

industry also make a major part of the landscape with

many areas being used as grazing land, livestock feed

production and large-scale feedlots (Harrington 2001).

Methods

Remote sensing for feature extraction

Remote sensing is commonly used for the identifica-

tion, extraction, and classification of Land Use/Land

Cover (LULC) types (Quattrochi et al. 2003; Koch

et al. 2007). Extracting thematic information from

imagery is typically accomplished through supervised

or unsupervised classification approaches (Jensen

2005; Richards and Xiuping 2005; Radoux and

Defourny 2007). Both supervised and unsupervised

classification methods have traditionally been accom-

plished on a per-pixel basis. Per pixel classification

takes into account only the spectral value of a single

pixel, which limits its capability to identify ‘features’

and process very high resolution data (Jensen 2005).

More recently, object-based classification methods

have been gaining in popularity. Object-based classi-

fication groups homogeneous pixels through a seg-

mentation process and converts them to multi-pixel

shapes that later become the basis for classification

(Jensen 2005; Rutherford and Rapoza 2008).

Object-based image analysis (OBIA)

Object-based classification considers shape and context of

landscape features or objects along with the position, size

and spectral characteristics of individual objects during

Fig. 1 Kansas reference map and study area within Kansas forest service districts
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classification (Jensen 2005; Blaschke 2010). Essentially,

object-based classification allows a classification scheme

to be based on the shape of objects or features rather than

simply the spectral reflectance of single pixel (Baatz et al.

2004; Rutherford and Rapoza 2008).

Often, object-based classification has shown its

usefulness in classifying entire images and also for

single feature extraction. Using certain spatial and

spectral criteria, it is the objective of this research to

isolate windbreaks from all other land cover features

and assess their condition using different spectral and

textural properties. By taking advantage of the unique

ability of object-based classification to classify fea-

tures based on their shape, windbreak features should

be easily distinguished from all other land cover

features that share similar spectral properties (Wise-

man et al. 2007). In addition, using this automated

technique it should help decrease the amount of time

required to inventory windbreaks by eliminating much

of the field survey methods employed by Read (1958).

The non-spectral classification criteria are crucial for

accurate classification of windbreaks for two reasons.

First, windbreaks are usually linear strips of tree

plantings. A riparian forest area would exhibit similar

spectral reflectance characteristics and make it difficult

to distinguish it from a windbreak without first consid-

ering some shape criteria in the classification. Second,

object-based classification software package we are

using allow for the isolation of features of interest. This

means that, based on certain shape and spectral

parameter settings, one can eliminate features in the

image that are not relevant before beginning the

classification process, resulting in more efficient clas-

sification and image processing times.

Image preprocessing

The images used in this study were acquired from the

2008/2010/2012 NAIP. NAIP imagery has spatial and

radiometric resolutions of 1 meter and 8 bits, respec-

tively. Each image is multispectral in nature, and

contains spectral data from four bands of the electro-

magnetic spectrum: blue (band 1), green (band 2), red

(band 3), and near infrared (NIR) (band 4). The NAIP

imageries were collected during the growing season

(Williams and Davis 2013). Each NAIP image was

resampled using the nearest neighbor technique at a

factor of 6 to reduce image file size and speed computer

processing (Parker et al. 1983; Dodgson 1992).

Image segmentation, segment merging

and thresholding

The ENVI Zoom 4.5 Feature Extraction Module (ITT

Visual Information Solutions 2007) which was used in

this research, uses an edge-based algorithm developed by

Robinson et al. (2002) to segment imagery. However,

little research has been published using this software

(ITT Visual Information Solutions 2007). Several seg-

mentation methods are available that can be used to

isolate homogeneous pixels into proper objects. Here, an

edge-based segmentation method and Support Vector

Machine (SVM) classifier were applied using the ENVI

Zoom 4.5 Feature Extraction Module (ITT Visual

Information Solutions 2007). The edge-based segmen-

tation algorithm tends to operate faster than other

approaches, such as bottom-up region merging, because

it requires only scale level as an input parameter. Scale

level is an area measure that determines the size of

objects to be created. Scale parameter values range from

0 to 100 with segments decreasing in size as they move

closer to 0. We used a scale level range of 70–80. A

county with longer windbreaks needed larger scale level

value for segmentation. Similarly, if a county contains

several small farmstead windbreaks scale parameters

would need to be decreased to reduce the generalization

of those windbreaks. County specific scale level range

was also useful in differentiating windbreaks with

riparian area, which has similar spectral properties. The

scale level range of 70–80 adequately defined segments

between the windbreak and surrounding LULC types in

the study area (Tian and Chen 2007).

Segment merging, based on a Full Lambda-

Schedule algorithm (Robinson et al. 2002) was then

applied to identify and combine neighboring objects

with similar spatial, spectral, and textural properties.

After experimentation, a lambda value ranging from

50 to 60 was found to be most effective at merging

segments within windbreaks while keeping them

distinct from neighboring LULC types.

In addition to image segmentation and merging, a

technique called thresholding was used to eliminate

computed objects with mean spectral values that were

not essential for identifying windbreaks. For this

project, the only land use/land cover type of concern

is the windbreak vegetation, so elimination of imper-

vious features such as roads, houses, bare soil, and

parking lots makes the process of correctly defining

classes for the remaining vegetation types much

Agroforest Syst

123



simpler. Visual analysis showed that a minimum band

threshold of 90 eliminated most impervious features.

After thresholding, however, several non-windbreak

vegetation LULC types (e.g., riparian areas, forest

patches and croplands) remained in the image.

Using the segmentation parameters discussed pre-

viously generated thousands of objects in each county.

This is largely because fragmentation within the

classified featured class is very well captured by

object-based approach. A larger-scale view (1:35,000)

of several segmented objects within the study area is

shown in Fig. 2. Areas in white contain no data as they

were masked out during the thresholding process.

Image classification

After unwanted regions of the image were eliminated,

attributes for use in classification were computed.

These image attributes included those related to spatial

geometry (e.g., area, length, roundness), spectral

characteristics (e.g., pixel brightness values within

objects), texture (e.g., measures of pixel variance and

range), and band ratio (e.g., hue, saturation, and

intensity of pixel values within objects). Object

classification, using a supervised approach, followed

the export of segments and their associated attributes.

After inspecting the post-thresholding image, a set of

custom classes was created to drive the supervised

classification process (Table 1). Training sites were

then established for each of the six classes.

The discrete capability index (DCI) was used to

select the optimal set of object attributes for classify-

ing the features that remained after thresholding (ITT

Visual Information Solutions 2007).

The final step in this object-based image classifi-

cation involved using the SVM algorithm with a radial

basis function (RBF) kernel. SVM uses a training set

of instance-label pairs to map vectors into a possibly

infinite number of spatial dimensions by the function

U (Hsu et al. 2008). The SVM algorithm then uses

optimization methods to divide numeric attributes into

upper and lower margins based on a set number of

hyper-planes that split the data into their respective

classes (Huang and Zhang 2008; Hsu et al. 2008).

Another classification algorithm often used in object-

based classifications, K Nearest Neighbor, was

avoided here for two primary reasons: (1) windbreaks

are not distributed in a uniform manner across the

landscape, so similar nearby features can’t reliably be

Fig. 2 Portion of the segemented image of vegetative features

in clark county (1:35,000 scale). The white space represents the

features removed during thresholding process. Circles repre-

sents crop field with pivot irrigation systems. The line represents

windbreaks. Remaining grey patches represents either tree

stands, shrubs, riparian area and/or small forest patches

Table 1 Landuse/landcover (lulc) categories used in the

classification and their description

LULC type Description

Crops Live row crops including center pivot

irrigation land

Tree stands Individual stands of trees/shrubs not linear in

nature and not near water feature

Riparian Long irregularly shaped stands of trees

bordering water features

Windbreaks Linear strips of trees planted near farm

houses and crop fields likely to have

jagged edges conforming to the shape of

outer edge trees

Manicured

landscapes

Vegetative features under human

management such as golf courses, lawns

baseball fields, soccer fields, football fields

Ditches Long linear features running parallel to

roads and rail road tracks containing few

trees and smooth edges
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classified as windbreaks, and (2) misleading results

would likely result given that very large areas were

masked out of the image during thresholding, where

objects containing no similar spectral properties

consistent with that of a windbreak were excluded

from analysis.

Accuracy assessment

To assess the accuracy of the object-based windbreak

classification using a traditional error matrix approach,

a number of random sample points within each of the

six supervised classification-training sites were gen-

erated. The proper number of random samples was

determined using the equation from Fitzpatrick-Lins

(1981). Fitzpatrick-Lins (1981), Congalton (1991) and

Congalton and Green (1999) suggest that each class

have at least 50 random points when dealing with large

areas (i.e, 1 million ha or more), so each class was

assigned at least 50 random points in order to construct

the error matrix. Once random samples were generated

within each class, the error matrix was populated by

inspecting the original NAIP image in the area of each

random point. Knowledge-based interpretation of

LULC features was used to determine if the object-

based classification classes matched the actual LULC

visible in the aerial photograph. Because the wind-

break category was the only class for which accuracy

was relevant, a 2 9 2 error matrix of non-windbreak

and windbreak classes was constructed (Table 2).

Producer and user accuracies for each class were

calculated after the error matrix was populated.

Finally, the Kappa value was calculated to provide

an estimate of how much better the object-based

classification performed relative to a random assign-

ment of classes to each object (Jensen 2005).

Accuracy assessment help quantify how good a job

the classifier did. In our case, accuracy assessment and

kappa value are low. The strength of agreement is

considered satisfactory. This satisfactory result could

be because of the limitations of the OBIA using the

ENVI Zoom 4.5 software. The details of the limitation

are discussed in the section below.

Limitations of OBIA using The ENVI Zoom 4.5

We re-sampled the original image to reduce the size of

the image and to make it compatible for the software.

On one hand, it helped the classification process by

transforming the feature of interest, windbreaks, into

more homogeneous areas to facilitate the image

segmentation. However, the segmentation process

failed to identify the younger windbreaks, 5 years or

younger due to resampling. The other issue related to

this method is demarcation of the proper boundary of

the windbreak. The boundary of the objects was

inconsistent with that of actual windbreak features on

the ground. When examining object-based results over

the original NAIP image it was evident that some

windbreaks were not captured in their entirety (Fig. 3).

Because a resample product was being used for image

segmentation and windbreak classification, the seg-

mentation process had difficulty recognizing very poor

condition areas within a larger windbreak feature. This

is due to the drastic change in spectral reflectance

between a densely canopied area in windbreak and that

of a degraded area where snags, gaps, and soils was

sometimes visible. Figure 3 displays a subset of the

Ford County image where the segmentation process

defined the border of a dense windbreak very well

compared to another site where an inaccurate border

was identified for a degraded windbreak.

To correct the error and complement the shortcom-

ings of ENVI Zoom software and OBIA method we

used various tools and techniques in ArcGIS.

Post classification process

Heads-up digitization, boundary eating and area

calculation in ArcGIS

Heads-up digitization is a process of converting the

geographic features (windbreaks) using a raster data

Table 2 Error matrix compiled from a random distribution of

sample points for non-windbreak (nwb) and windbreak (wb)

classes from all fourteen counties

NWB WB Row total User

accuracy (%)

NWB 724 454 1,178 61.46

WB 216 239 455 52.52

Column total 940 693 1,633

Producer

accuracy

77.02 % Overall

accuracy

58.97

Kappa = 0.121, SE of kappa = 0.024, 95 % confidence

interval: 0.074–0.167
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(Original NAIP imagery, 1 m resolution) into vectors

by tracing a mouse over features displayed on a

computer monitor in ArcGIS (ESRI 2011). We used

this method to create windbreaks that were missed

during the classification process. Heads-up digitizing

was also helpful in capturing younger windbreaks,

which were missed because of the re-sampling done

during preprocessing of images. This method com-

plemented the shortcomings of ENVI Zoom software

and was one of the few available options to generate

complete inventory of the windbreaks in the study

area. Digitizing the image to include missed wind-

breaks is far less time consuming and cost effective as

compared to visiting and identifying each of the

windbreaks on the ground.

We also used the editor tool and a smoothing

technique in ArcGIS to merge the fragmented wind-

breaks and correct the boundaries demarcation.

Field survey

Remote sensing accuracy assessments usually, if not

always, require the use of ground truth data for

comparison purposes. To validate our results we visited

10–12 % percent of the windbreaks identified through

image analysis in each county. The other purpose of the

field survey was to identify windbreak condition on the

ground and their primary function. We visited more than

300 windbreaks in the field to collect information.

Published in the Great Plains initiative Inventory Project

Guide 1.0, Kort and Stefner (2007) foresters developed a

set of criteria that are used when performing field

surveys of windbreaks. We used the same criteria to

collect the ground information, such as primary func-

tion, condition, length and perimeter of windbreaks.

Many of the windbreaks were located on private

property; therefore, prior permission from the landown-

ers was obtained to access the windbreaks in the field.

Results and discussion

Object-based approach to classifying windbreaks

began with raw imagery and produced a result in a

couple of hours of computer processing time. This

combined with ‘‘heads-up’’ digitizing in GIS, the

preferred means to identify windbreak location for

many applications created an excellent windbreak

inventory in Kansas. The methods identified geospa-

tial locations of 4592 windbreaks in fourteen counties

in Western Kansas (Fig. 4). Once we finalized the

number of windbreaks and their location, we calcu-

lated area for each windbreak using the ArcGIS utility

tool. These windbreaks cover approximately an area of

2596 hectares (Table 3). The combined results of the

OBIA and digitizing process have generated an

excellent inventory of windbreaks in each of the

fourteen counties with overall accuracy of 96 %.

Once the area covered by the windbreaks was

calculated, we were able to assign condition classes

(good, fair and poor) to the windbreaks, based on the

survey of selected samples on ground. The study

summarized that out of 4592 windbreaks in the study

area, 61 % of the windbreaks are in good condition,

25 % in fair condition and 14 % of the windbreaks are

in poor condition (Fig. 5). We also categorize each of

Fig. 3 Accurate (a) and inaccurate (b) windbreak border assignments
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these 4592 windbreaks into farmstead, livestock, and

field windbreaks, based on their primary function. The

study revealed that 44 % of windbreaks were farm-

stead, 42 % were field windbreaks and 14 % were

serving livestock (Fig. 6).

Conclusion

Reports from various agencies estimated that over

44 % of Kansas windbreaks are in decline and in need

of renovation. There is a little good science to

efficiently document windbreak’s exact location, size

and specific condition. Therefore, it was timely to

develop methods for the rapid identification of wind-

break location. While a variety of windbreak surveys

have been conducted in the past, none performed in

Kansas have ever attempted to extract windbreaks

from aerial imagery at the county level. Therefore, we

used a remote sensing approach based on OBIA to

identify windbreaks visible in the color aerial

Fig. 4 Location of windbreaks in fourteen counties of Kansas

Table 3 Final number of windbreaks and the area covered by

these windbreaks in the study area

County No. of windbreaks Area covered by windbreaks

Acres Hectares

Clark 166 728.8169 294.941

Meade 239 440.451 178.244

Seward 29 26.170 10.590

Haskell 22 26.9154 10.89

Gray 196 222.5538 90.064

Ford 316 1,166.207 471.94

Hodgeman 109 140.538 56.8737

Ellsworth 512 701 284

Russell 287 404.225 163.584

Ellis 769 724.403 293.155

Trego 504 473.483 191.612

Gove 645 522.774 211.559

Logan 462 488.468 197.676

Wallace 336 349.141 141.292

Total 4,592 6,269.4531 2,537.153
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imageries of NAIP. The method developed can be

applied to identify the location of windbreaks in

Kansas that other areas in the Great Plains region and

beyond.

The OBIA was successful in classifying and

locating windbreaks with overall accuracy of

58.97 % with Kappa value 0.121. This assessment is

satisfactory. Confusion between riparian areas, shrub

patches and linear vegetated ditches along the road

were the main source of error. The other error was

younger windbreaks were missed during classification

process. However, from practical point of view, the

results received from the classification alone are

significant. This process of windbreak identification

is far less time consuming and cost effective as

compared to visiting and identifying each of the

windbreaks on the ground.

Studies have suggested that resultant products from

similar semi-automated methods are not sufficiently

reliable to be of direct utility without some form of

manual editing and revision (Benz et al. 2004;

Blaschke 2010; Tsai et al. 2011). Considerable manual

editing is normal in case of image processing and

photogrammetry. Therefore, heads-up digitization in

ArcGIS is our current alternative to complement and

compensate methodological limitation. We used

heads-up digitization to include missed windbreaks.

We also used the editor tool and a smoothing

technique in ArcGIS to merge the fragmented wind-

breaks, correct the boundaries demarcation, and delete

non-windbreak features classified as windbreaks. At

the mean time, we continue to on improving the

methodology to get better accuracy and desired results

from OBIA.

OBIA combined with heads-up digitizing and

editing tools in ArcGIS yielded desired results. The

methods identified geospatial locations of 4592 wind-

breaks in fourteen counties in Western Kansas with

overall accuracy of 96 %. The windbreaks cover

approximate area of 2596 hectares. The field survey of

selected samples supported our claim that 96 percent

of the time windbreaks identified through digital

image processing of NAIP images were correctly

identified. Only 4 % of the objects identified through

NAIP image analysis were not windbreak. The 4 % of

the non-windbreak features classified as windbreaks

were riparian area, shrub patches and/or fruit orchard.

We conclude that the OBIA combined with heads-

up digitization proved successful at rapidly identifying

windbreaks locations. The field survey of selected was

crucial in validating the results obtained from the

digital image processing. The survey was also helpful

in identifying the primary function of windbreaks and

their condition in the field. Therefore, similar methods

can be used in future projects to locate windbreaks in

other Kansas counties and across the Great Plains.

Funding Funding for this project was provided by the Kansas

Forest Service through the USDA State and Private Forestry

Western Competitive Resource Allocation grant program.
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P, Lingenfelder I, Mimler M, Sohlbach M, Weber M,

Fig. 6 Primary function of windbreaks in the study area

Fig. 5 Ground condition of windbreaks by county, Kansas

Agroforest Syst

123



Willhauck G (2004) eCognition Professional: User Guide

4. Munich: definiens-imaging. http://www.gis.unbc.ca/

help/software/ecognition4/ELuserguide.pdf. Accessed 27

Feb 2014

Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M

(2004) Multi-resolution, object-oriented fuzzy analysis of

remote sensing data for GIS-ready information. J Photo-

gramm Remote Sens 58:239–258

Blaschke T (2010) Object-based image analysis for remote

sensing. ISPRS J Photogramm Remote Sens 65:2–16

Brandle JR, Hodges L, Zhou XH (2004) Windbreaks in North

American agricultural systems. Agrofor Syst 61:65–78

Cable TT (1999) Nonagricultural benefits of windbreaks in

Kansas. Great Plain Res: A J Nat Soc Sci 417:41–55

Castonguay TL, Hansen MH (1984) Wooded stripes and

windbreaks in Kansas, 1981. Research Notes. NC313.

North Central Forest Experiment Station. USDA. Saint

Paul

Congalton RG (1991) A review of assessing the accuracy of

classifications of remotely sensed data. Remote Sens

Environ 37:35–46

Congalton RG, Green K (1999) Assessing the accuracy of

remotely sensed data: principles and practices. Lewis

Publishers, Boca Raton, p 137p

Croker T (1991) The Great Plains shelterbelt. Artistic Printers,

Greeneville

Dodgson NA (1992) Image re-sampling. Technical report:

Number 261. University of Cambridge, Cambridge

Droze WH (1977) Trees, prairies, and people: a history of tree

planting in the plains states. USDA Forest Service and

Texas Woman’s University Press, Denton 331

ESRI (2011) ArcGIS desktop: release 10. Environmental Sys-

tems Research Institute, Redlands

Fitzpatrick-Lins K (1981) Comparison of sampling procedures

and data analysis for a land-use and land-cover map.

Photogramm Eng Remote Sens 47(3):343–351

Goodin DG, Harrington J Jr, Rundquist B (2002) Land cover

change and associated trends in surface reflectivity and

vegetation index in southwest Kansas: 1972–1992. Geo-

carto Int 17(1):45–52

Grala RK, Tyndall JC (2010) Impact of field windbreaks on

visual appearance of agricultural lands. Agrofor Syst

80:411–422

Harrington LMB (2001) Attitudes toward climate change: major

emitters in southwestern Kansas. Clim Res 16(113–122):

341

Hsu C-W, Chang C-C, Lin C-J (2008). A practical guide to

support vector classification. Department of Computer

Science, National Taiwan University, Taipei, Taiwan.

http://www.csie.ntu.edu.tw/*cjlin/papers/guide/guide.pdf.

Accessed 5 May 2014

Huang X, Zhang L (2008) An adaptive mean shift analysis

approach for object extraction and classification from

urban hyperspectral imagery. IEEE Trans Geosci Remote

Sens 46(12):4173–4185

ITT Visual Information Solutions 2007. An interval based

attribute ranking technique. ITT-VIS White Paper, July

Jager G, Benz U (2000) Measures of classification accuracy

based on fuzzy similarity. IEEE Trans Geosci Remote Sens

38(3):1462–1467

Jensen JR (2005) Introductory digital image processing: a

remote sensing perspective, 3rd edn. Prentice Hall, Upper

Saddle River

Koch DE, Mohler RL, Goodin D (2007) Stratifying land use/

land cover for spatial analysis of disease ecology and risk:

an example using object-based classification techniques.

Geospatial Health 2(1):15–28

Kort J, Stefner C (2007) A protocol for shelterbelt assessment

related to its function. When trees and crops get together.

In: Proceedings of the 10th North American agroforestry
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